PRACTICE FINAL (VOJTA) - SOLUTIONS

PEYAM RYAN TABRIZIAN

(1) (a)

1) Let $y=\left(e^{x}+x\right)^{\frac{1}{x}}$
2) $\ln (y)=\frac{\ln \left(e^{x}+x\right)}{x}$
3) $\lim _{x \rightarrow 0} \ln (y) \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{e^{x}+1}{e^{x}+x}=2$
4) Hence $\lim _{x \rightarrow 0} y=e^{2}$
(b)

$$
\lim _{x \rightarrow \frac{\pi}{2}-} \frac{\tan ^{2} x-3}{7 \tan ^{2} x+\sin x}=\lim _{x \rightarrow \frac{\pi}{2}-} \frac{1-\frac{3}{\tan ^{2} x}}{7+\frac{\sin x}{\tan ^{2} x}}=\frac{1-\frac{3}{\infty}}{7+\frac{0}{\infty}}=\frac{1}{7}
$$

(c)
$\lim _{x \rightarrow-\infty} \frac{3 x+2}{\sqrt{x^{2}+7}}=\lim _{x \rightarrow-\infty} \frac{x\left(3+\frac{2}{x}\right)}{\sqrt{x^{2}} \sqrt{1+\frac{7}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{x\left(3+\frac{2}{x}\right)}{|x| \sqrt{1+\frac{7}{x^{2}}}}=\lim _{x \rightarrow-\infty} \frac{x\left(3+\frac{2}{x}\right)}{-x \sqrt{1+\frac{7}{x^{2}}}}=-3$
(2) Notice that $0 \leq \frac{1}{x+\frac{1}{\ln (x)}} \leq \frac{1}{x}$ because $\frac{1}{\ln (x)}>0$ when $x>1$. Moreover, $\lim _{x \rightarrow \infty} 0=0$ and $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, so by the squeeze theorem, $\lim _{x \rightarrow \infty} \frac{1}{x+\frac{1}{\ln (x)}}=$ 0
(3) (a) Don't worry about this, no cosh on the exam!
(b) Again, don't worry, butI would still try to do it, because it's a good exercise in differentiating! The only thing you should know is that $\cosh ^{\prime}=\sinh$:

$$
\frac{d}{d x} \frac{\ln \left(\cosh x^{2}\right)}{e^{x}+2}=\frac{\frac{\left(\sinh x^{2}\right)(2 x)}{\cosh x^{2}}\left(e^{x}+2\right)-\ln \left(\cosh x^{2}\right)\left(e^{x}\right)}{\left(e^{x}+2\right)^{2}}
$$

(4) (a) Using implicit differentiation: $3 y^{2} y^{\prime}=4 x^{3}+8 y^{\prime}$, now plugging in $x=1$ and $y=2$, you get: $12 y^{\prime}=4+8 y^{\prime}$, so $4 y^{\prime}=4$, so $y^{\prime}=1$
(b) Starting with $3 y^{2} y^{\prime}=4 x^{3}+8 y^{\prime}$, differentiate this again, and you get $6 y\left(y^{\prime}\right)^{2}+$ $3 y^{2} y^{\prime \prime}=12 x^{2}+8 y^{\prime \prime}$, now plugging in $x=1, y=2$, and $y^{\prime}=1$ (which you got from (a)), you get: $12+12 y^{\prime \prime}=12+8 y^{\prime \prime}$, so $4 y^{\prime \prime}=0$, so $y^{\prime \prime}=0$
(5) Here $f(x)=\tan (x), a=\frac{\pi}{4}$, so:

$$
L(x)=f(a)+f^{\prime}(a)(x-a)=\tan \left(\frac{\pi}{4}\right)+\sec ^{2}\left(\frac{\pi}{4}\right)\left(x-\frac{\pi}{4}\right)=1+2\left(x-\frac{\pi}{4}\right)
$$

Hence:

$$
\tan \left(\frac{\pi}{4}+0.01\right) \approx L\left(\frac{\pi}{4}+0.01\right)=1+2\left(\frac{\pi}{4}+0.01-\frac{\pi}{4}\right)=1.02
$$

(6) 1) Want to find: $\frac{d r}{d t}$
2) $V=\pi r^{2} h$
3) $\frac{d V}{d t}=2 \pi r \frac{d r}{d t} h+\pi r^{2} \frac{d h}{d t}$
4) $-2 \pi=2 \pi r \frac{d r}{d t}(6)+\pi r^{2}(-1)$, but from $V=\pi r^{2} h$, and $V=24 \pi$ and $h=6$, you get $r=4$, and so: $-2 \pi=2 \pi(2) \frac{d r}{d t}(6)+\pi(4)(-1)$, so $-2 \pi=$ $24 \pi \frac{d r}{d t}-4 \pi$, so $\frac{d r}{d t}=\frac{1}{12}$, so the radius is increasing by $\frac{1}{12} \mathrm{~cm} / \mathrm{sec}$
(7) 1) Endpoints: $f(-1)=-1+4=3, f(27)=27-3(9)=0$
2) Critical points: $f^{\prime}(x)=1-2 x^{-\frac{1}{3}}=0 \Leftrightarrow x=8$, and $f(8)=8-3(4)=-4$, also 0 is a critical point $\left(f^{\prime}(0)\right.$ is not defined), and $f(0)=0$
3) Hence the absolute maximum is $f(-1)=3$ and the absolute minimum is $f(8)=-4$
(8) Don't worry about slant asymptotes!
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(x-\frac{1}{x^{2}}\right)}{x^{2}\left(1-\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{x-\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}=\infty$
And similarly $\lim _{x \rightarrow-\infty} f(x)=-\infty$, so f has no horizontal asymptotes.
For the vertical asymptotes, the only candidates are $x= \pm 1$ (those are the values where f is undefined)
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow 1^{+}} \frac{x^{2}+x+1}{x+1}=\lim _{x \rightarrow 1^{+}} \frac{3}{2}$
Similarly $\lim _{x \rightarrow 1^{-}} f(x)=\frac{3}{2}$, so $x=1$ is NOT a vertical asymptote of f ! (Note that you could also use l'Hopital's rule for this, but great care must be taken, it only works once! If you do it twice, you're in trouble!).

However,
$\lim _{x \rightarrow(-1)^{+}} f(x)=\lim _{x \rightarrow(-1)^{+}} \frac{x^{3}-1}{x^{2}-1}=\lim _{x \rightarrow(-1)^{+}} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)}=\lim _{x \rightarrow(-1)^{+}} \frac{x^{2}+x+1}{x+1}=\lim _{x \rightarrow 1^{+}} \frac{3}{0^{+}}=\infty$

Hence $x=-1$ is a vertical asymptote of f (no need to calculate $\lim _{x \rightarrow(-1)^{-}} f(x)$, since you already found ∞ for one side of the limit! Also, again, L'Hopital's rule works perfectly well, but you can only use it once!)
(9) We have $a(t)=-3$, so $v(t)=-3 t+C$. But $v(0)=C=30$, so $v(t)=-3 t+30$, $v(t)=0 \Leftrightarrow-3 t+30=0 \Leftrightarrow t=10 \mathrm{sec}$
(10) Ignore this, Newton's method is not on the exam!
(11) (a) 0 (odd function!)
(b) Notice that $9 x^{2}=(3 x)^{2}$, now let $u=3 x$, then $d u=3 d x$, so $d x=\frac{1}{3} d u$, and:

$$
\int \frac{d x}{9 x^{2}+1}=\int \frac{\frac{1}{3} d u}{u^{2}+1}=\frac{1}{3} \int \frac{d u}{1+u^{2}}=\frac{1}{3} \tan ^{-1}(u)+C=\frac{1}{3} \tan ^{-1}(3 x)+C
$$

(c)

$$
\int \frac{x^{4}+1}{x^{3}} d x=\int \frac{x^{4}}{x^{3}}+\frac{1}{x^{3}} d x=\int x+x^{-3} d x=\frac{x^{2}}{2}+\frac{x^{-2}}{-2}+C=\frac{x^{2}}{2}-\frac{1}{2 x^{2}}+C
$$

(d) Let $u=\cos \left(x^{2}\right)$, then $d u=-2 x \sin \left(x^{2}\right)$, so:

$$
\int\left(x \sin \left(x^{2}\right)\right) e^{\cos \left(x^{2}\right)} d x=\int-\frac{1}{2} e^{u} d u=-\frac{1}{2} e^{u}+C=-\frac{1}{2} e^{\cos \left(x^{2}\right)}+C
$$

(e) Let $u=x-1$, then $d u=d x, x=u+1$, and $u(1)=0, u(2)=1$, so:

$$
\int_{1}^{2} x \sqrt[4]{x-1} d x=\int_{0}^{1}(u+1) \sqrt[4]{u} d u=\int_{0}^{1} u^{\frac{5}{4}}+u^{\frac{1}{4}} d u=\left[\frac{4}{9} u^{\frac{9}{4}}+\frac{4}{5} u^{\frac{5}{4}}\right]_{0}^{1}=\frac{4}{9}+\frac{4}{5}=\frac{56}{45}
$$

(12) $f(x)=x^{2}, a=1, b=2, \Delta x=\frac{2-1}{n}=\frac{1}{n}, x_{i}=a+(\Delta x) i=1+\frac{i}{n}$, so:

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(1+\frac{i}{n}\right)^{2} \frac{1}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{1}{n}+\frac{2 i}{n^{2}}+\frac{i^{2}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} 1+\frac{2}{n^{2}} \sum_{i=1}^{n} i+\frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} n+\frac{2}{n^{2}} \frac{n(n+1)}{2}+\frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \\
& =\lim _{n \rightarrow \infty} 1+\frac{n+1}{n}+\frac{(n+1)(2 n+1)}{6 n^{2}} \\
& =1+1+\frac{2}{6} \\
& =\frac{7}{3}
\end{aligned}
$$

(13) (a) If you draw a picture, you should notice that the disk method doesn't work (region is not glued to the y-axis), and the washer method would be a pain, because you'd have to calculate x in terms of y ! So the only hope that's left is to use the shell method!
$k=0$, Radius $=|x-0|=x$ (since $x \geq 0$), Height $=$ Bigger - Smaller $=3 x-x^{2}-2 x^{2}=3 x-3 x^{2}$
Points of intersection: $2 x^{2}=3 x-x^{2} \Leftrightarrow 3 x^{2}=3 x \Leftrightarrow x=0$ or $x=1$

$$
V=\int_{0}^{1} 2 \pi(x)\left(3 x-x^{2}\right) d x=\int_{0}^{1} 2 \pi\left(3 x^{2}-3 x^{3}\right) d x=2 \pi\left[x^{3}-\frac{3}{4} x^{4}\right]_{0}^{1}=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

(b) Washer method (vertical washers):
$k=1$, Outer $=$ Bigger $-k=3 x-x^{2}+1$, Inner $=$ Smaller $-k=2 x^{2}+1$, Points of intersection $=0,1$ (as in (a)), so:

$$
V=\int_{0}^{1} \pi\left(\left(3 x-x^{2}+1\right)^{2}-\left(2 x^{2}+1\right)^{2}\right) d x
$$

